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Abstract

Time-varying factor models have been widely used to model changing relationships among

economic and financial variables. The existing literature usually specifies the time-varying factor

loadings as deterministic functions of time or unit root processes. This paper proposes two consis-

tent tests to distinguish these two specifications based on a randomization approach. By setting

the null hypothesis as either specification, we show that the proposed test statistics follow an

asymptotic chi-squared distribution under the respective null hypotheses and diverge to infinity

in probability under the respective alternatives. Simulation studies show that both test statistics

perform reasonably well in finite samples. We apply the proposed tests to the U.S. macroeconomic

and global macroeconomic and financial datasets. The results suggest that the time-varying factor

loadings as deterministic functions of time should be adopted for these two applications.
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1 Introduction

Factor models have attracted great attention in analyzing large-dimensional macroeconomic and

financial datasets. In a factor model, a few latent common factors drive the comovement of a large-

dimensional vector of time series variables, and the factor loadings capture the relationships between

large-dimensional variables and latent common factors. The conventional factor models (e.g., Stock

and Watson, 2002; Bai and Ng, 2002; Bai, 2003) assume the factor loadings to be time-invariant

for a long period. Recently, more and more studies have realized that the factor loadings may be

time-varying due to various forces such as economic transition, institutional switching, preference

changes, and technological innovations. With growing empirical evidence of the widespread time-

varying economic relationships, macroeconomists and financial economists have paid more and more

attention to the time-varying factor models and their related models.

A vast literature on time-varying factor models specifies the time-varying factor loadings as either

deterministic functions of time or stochastic processes, mostly stationary VAR processes or unit

root processes. Bates et al. (2013) consider estimating approximate factor models with temporal

instability in the factor loadings. They show that for the time-varying factor model, the common

factors can still be consistently estimated by the principal components analysis (PCA) in terms of

the mean square error convergence under certain conditions on structural instability. Mikkelsen et

al. (2019) specify the factor loadings to evolve as stationary vector autoregressive (VAR) processes

and propose a two-step maximum likelihood estimator for time-varying factor loadings. They note

that the PCA approach can still deliver consistent estimators for the common factors under certain

conditions when the time-varying factor loadings follow stationary VAR processes. Thus, one can

ignore the stationary stochastic time-varying behavior in factor loadings and use the conventional

PCA procedure to estimate the common factors. Nevertheless, if the time-varying factor loadings

evolve as deterministic functions of time with a sufficient magnitude of variation or as the usual

unit root processes, the PCA will result in inconsistent estimation. Consequently, existing tests

for structural changes constructed based on common factors, such as Chen et al. (2014), Han and

Inoue (2015), and Cheng et al. (2016), can distinguish a factor model with stationary VAR factor

loadings from that with the factor loadings evolving as deterministic functions of time or unit root

processes. However, they cannot distinguish the factor loadings with unit root processes from those

as deterministic functions of time despite the broad applications of the latter two specifications in
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empirical studies.

Factor models with a random-walk type of factor loadings have been widely adopted in empir-

ical applications. Stock and Watson (2002) assume the time-varying factor loadings to follow unit

root processes with innovations of order OP (T
−1), where T is the sample size of time. Such small

innovations can be regarded as temporal instability (e.g., Stock and Watson, 1996, 1998). Eickmeier

et al. (2015) consider a time-varying factor-augmented vector autoregressive (FAVAR) model where

the factor loadings are assumed to be varying as random walk processes with non-asymptotically

negligible innovations and apply the model to a large dataset of U.S. macroeconomic variables. Del

Negro and Otrok (2008) assume that the factor loadings evolve as random walk processes and use

the time-varying factor model to study the evolution of international business cycles in the post-

Bretton Woods period. Baumeister et al. (2013) and Korobilis (2013) also specify the factor loadings

as random walk processes when studying the transmission mechanism of the U.S. monetary policy.

Mumtaz and Musso (2021) use a dynamic factor model with a random-walk type of factor loadings to

extract global, regional, and country-specific uncertainty. Regarding estimation, a common approach

is to estimate the time-varying factor model with random walk factor loadings under the Bayesian

framework, say, via a Gibbs sampling procedure. However, this procedure does not yield consistent

estimates for the time-varying factor loadings.

An alternative specification for the time-varying factor loadings regards the factor loadings as

piecewise smooth functions of time. For example, Breitung and Eickmeier (2011) investigate the

consequences of structural breaks in the factor loadings for the specification and estimation of the

factor model based on the PCA and propose three statistics to test for structural breaks in factor

loadings. Su and Wang (2017) introduce a time-varying factor model in which the factor loadings

are allowed to change smoothly over time and propose a local version of the PCA to estimate the

common factors and factor loadings. Ma et al. (2020) propose a high-dimensional alpha test for the

time-varying factor models with high-dimensional assets, where the time-varying factor loadings are

specified as smooth functions of time. Fu et al. (2022a) propose a time-varying FAVAR model with

both the factor loadings and the regression coefficients being smooth functions of time.

Although both the stochastic and deterministic specifications for factor loadings can model time-

varying relationships among large-dimensional variables, their interpretations and implications are

quite distinct. Cogley and Sargent (2001) point out that the fluctuations in the parameters of a

reduced-form economic system may result from evolving beliefs of the policymaker, which leads
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to stochastic evolution. The evolution in beliefs itself is a potential product of the interaction of

model misspecification by policymakers and the effects of policies on the economy. In contrast, the

deterministic time-varying coefficients arise when either smooth or abrupt structural changes exist.

The economic motivation behind it is the changing structure of an economic relationship, and such a

structural change only depends on time. In addition, the estimation procedures for these two types

of specifications are also different. For example, most existing literature estimates the time-varying

factor models with stochastic factor loadings under the Bayesian framework and proposes several

sampling procedures. In contrast, nonparametric kernel or sieve methods are typically employed to

estimate the time-varying factor models when the factor loadings are smooth functions of time. To

draw a reliable conclusion, one should specify an appropriate structure for the time-varying factor

loadings. To the best of our knowledge, no formal test exists to distinguish these two different

specifications for time-varying factor loadings despite their broad applications in empirical research.

This paper proposes specification tests to distinguish the deterministic time-varying and unit-root

type factor loadings. Since these two types of models are nonnested, one cannot employ some existing

testing procedures that typically work for nested models. Instead, we adopt the randomization

approach pioneered by Pearson (1950) to construct our tests. The randomization approach has a long

history in the literature. The idea behind it is simple. When a statistic only has one realization based

on the sample observations, one can inject randomness into it to gauge its asymptotic properties. For

instance, Corradi and Swanson (2006) propose a randomized test statistic to test for appropriate data

transformations. Under the proper transformation, they show that the test statistic follows a well-

defined asymptotic distribution using the added random variables conditioning on the sample but

diverges to infinity under the improper transformations. Based on a similar idea but under a different

framework, Bandi and Corradi (2014) adopt the randomization approach to propose nonparametric

tests for nonstationarity, which are robust to nonlinear dynamics. Trapani (2018) estimates the

number of common factors in a static factor model by using a randomization approach to test the

magnitude order of the sample eigenvalues of the data’s covariance matrix sequentially. Barigozzi

and Trapani (2020) use the randomization approach to monitor the structural stability of a static

factor model.

To distinguish the two types of time-varying factor loadings, we construct two statistics that

exhibit different orders of magnitude under the deterministic time-varying and unit-root type factor

loadings. Using the randomization approach, we can show that the randomized test statistics follow
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an asymptotic chi-squared distribution with one degree of freedom (χ2
1) under the respective null

hypotheses of either specification and diverge to infinity under the respective alternative hypotheses.

The merit of such an approach is three-fold. First, we avoid direct Bayesian or nonparametric estima-

tion of the unknown time-varying factor model and do not need to consider consistent estimation for

the true number of factors under either specification. Second, the test statistic is easy to construct

and asymptotically pivotal. Third, we can construct two test statistics for either specification as the

null hypothesis so that we can formally distinguish the two nonnested specifications.

Admittedly, a well-known drawback of the randomization approach is that it relies on the gener-

ated randomness under which different researchers may draw different conclusions with small positive

probability using the same dataset. However, such an issue does not only exist for the randomization

approach. For instance, sample conditioning is also applied to bootstrap tests. Different researchers

may obtain distinct bootstrap quantiles even with the same sample and the same value of the actual

test statistic. Despite this, we note that a substantial difference remains between the bootstrap

resampling and the randomization approach. For the bootstrap method, if the sample size is suffi-

ciently large, all researchers should reject the null hypothesis at 100α% of the cases under the null

hypothesis when the asymptotic level of the test is α. In contrast, for the randomization approach,

we should expect that 100α% of the researchers shall reject the null hypothesis when it is true, and

the asymptotic level is chosen to be α, given the same dataset. As a result, the interpretations of

committing Type I errors are different for the bootstrap and randomized tests.

The remainder of the paper is organized as follows. Section 2 introduces the hypotheses of

interest and the test statistics. Section 3 investigates the asymptotic properties of our test statistics

under the null and alternative hypotheses. Section 4 discusses some possible extensions of our test.

Section 5 reports Monte Carlo simulation results. Section 6 provides empirical studies on the U.S.

macroeconomic dataset and the global economic and financial dataset. Final remarks are given in

Section 7. All proofs are relegated to the Appendix.

2 The Hypotheses and Test Statistics

In this section, we first introduce the hypotheses of interest and then propose the corresponding test

statistics.
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2.1 The Hypotheses of Interest

Let {Xit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T} be an N -dimensional time series with T observations. The

index i represents the ith cross-sectional unit in a panel dataset or the ith random variable in a

multivariate time series dataset. We assume that Xit is generated via the following time-varying

factor model:

Xit = λ′
itFt + εit, (2.1)

where Ft = (F1t, ..., FRt)
′ is an R × 1 vector of unobserved common factors with R being the true

number of common factors, λit is an R × 1 vector of time-varying factor loadings, and εit is the

idiosyncratic error such that E(εit|Ft, λit) = 0.

In the literature, there are two widely adopted specifications for the time-varying factor loadings

λit. One of them specifies λit as a deterministic function of time:

λit = λi(t/T ), (2.2)

where λi : (0, 1] → R is a smooth function of the rescaled time index t/T with countably many

discontinuity points defined on the unit interval (0, 1]. Related works include Breitung and Eickmeier

(2011), Chen et al. (2014), Han and Inoue (2015), and Su and Wang (2017).

The other specification assumes that λit follows a unit root process:

λit = µi + λi(t−1) + νit, (2.3)

where µi is an R × 1 drift term and νit is an R × 1 martingale difference sequence for each i with

E(νit) = 0 and var(νit) = Πi. Related works include Stock and Watson (2002), Banerjee et al.

(2008), Del Negro and Otrok (2008), Bates et al. (2013), and Eickmeier et al. (2015).

These two specifications have distinct economic interpretations. The specification given by (2.2)

is closely related to the literature on structural breaks in factor models. Related literature includes

Breitung and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015), Su and Wang (2017,

2020), and Fu et al. (2022b), who test for structural breaks in factor models. Structural breaks

imply that the time-varying feature of the factor loadings only depends on time t deterministically.

For example, the abrupt structural breaks considered by Breitung and Eickmeier (2011), Chen et

al. (2014), and Han and Inoue (2015) assume that λit is a step function of the rescaled time index

t/T for each i. The smooth structural changes studied by Su and Wang (2017, 2020) and Fu et
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al. (2022b) allow λit to be a smooth function of t/T for each i. In contrast, the specification given

by (2.3) assumes that the time-varying feature of the factor loadings is stochastic, which relates to

the literature on random coefficient models in time series regression; see, e.g., Rosenberg (1973) and

Cooley and Prescott (1976). Recently, several empirical studies, such as Del Negro and Otrok (2008),

Baumeister et al. (2013), Korobilis (2013), Eickmeier et al. (2015), and Mumtaz and Musso (2021),

model the time-varying factor loadings as random walk processes.

In empirical applications, a natural question arises: which specification, (2.2) or (2.3), should

one adopt for a particular study? The primary interest of this paper is to propose formal tests to

distinguish these two specifications. Specifically, we consider the following two hypotheses

H1 : λit = λi (t/T ) ,

where λi (·) is a smooth function of the rescaled time index t/T with countably many discontinuity

points defined on the unit interval (0, 1], and

H2 : λit = λi(t−1) + νit,

in which the drift term is set as zero. At this moment, we focus on the unit root process without a

drift. We will consider the case with a drift term in Section 4.2.

2.2 Test Statistics

For an m × n real matrix A, we denote A′ as its transpose and ∥A∥ ≡ tr(AA′)1/2 as its Frobenius

norm, where ≡ signifies definitional relationship and tr(·) is the usual trace operator. Let I(·) denote

the indicator function and the operator a.s.→ denote the almost sure convergence as the sample size

T → ∞.

In this section, we propose two statistics to test H1 against H2 and H2 against H1, respectively.

In this way, one can formally distinguish these two specifications. To achieve this, we first show

the impact of these two specifications on the factor models. Specifically, we consider the sum of the

sample eigenvalues of the T × T matrix XX ′/(NT ), where X is a T × N matrix with the (t, i)th

element given by Xit.

Let ϕ̂jNT be the jth largest sample eigenvalue of XX ′/(NT ). Then, we have

D̂ ≡
T∑

j=1

ϕ̂jNT = tr
(
XX ′

NT

)
=

1

NT

N∑
i=1

T∑
t=1

X2
it =

1

NT

N∑
i=1

T∑
t=1

(F ′
tλit + εit)

2

7



=
1

NT

N∑
i=1

T∑
t=1

F ′
tλitλ

′
itFt +

1

NT

N∑
i=1

T∑
t=1

ε2it +
2

NT

N∑
i=1

T∑
t=1

F ′
tλitεit.

Under H1, it is straightforward to show that D̂ = Op(1) under certain regularity conditions on Ft and

λit (e.g., Su and Wang, 2017). Intuitively, the deterministic time-varying features of λit do not affect

the typical order of the sample eigenvalues. However, when H2 holds, we can show that D̂ = Op(T )

due to the explosive features of λit. This implies that we can distinguish H1 and H2 by examining

the order of magnitude of the sample eigenvalues.

However, since one can only observe one sample in practice, it is infeasible to test the order of

magnitude of D̂ using conventional tests. For this reason, we adopt the randomization approach

pioneered by Pearson (1950), in which randomization is employed in conjunction with sample con-

ditioning. Specifically, we add randomness to the basic statistic D̂ and then derive the asymptotic

results conditional on the observed sample. Besides that, we show that the established results hold

for all samples, save for a zero-measure set. Thus, we need to derive the almost sure convergence

results for D̂ under H1 and H2, respectively.

Now we show how to test H1 and H2 against each other using the randomization approach.

Let YNT ≡ YNT (ω) be a statistic based on the sample path ω, e.g., YNT (ω) = TD̂ (ω)−1, where

D̂(ω) = D̂. Suppose we have YNT
a.s.→ ∞ under the null hypothesis and YNT

a.s.→ y for some constant

y > 0 under the alternative hypothesis. Consider the following procedure:

• Step 1. Generate an i.i.d. random sample {ξm}Mm=1 with a common distribution G(·) = P (ξm ≤

·) such that G(0) ̸= 0 or 1, and define

Vm,NT (ω) = YNT (ω)ξm.

• Step 2. For any u drawn from a cumulative distribution function (CDF) Φ(·) with a compact

support U, construct

ZNT (u, ω) =
1√
M

M∑
m=1

I(Vm,NT (ω) ≤ u)−G(0)√
G(0)[1−G(0)]

.

• Step 3. Compute the test statistic

SNT (ω) =

∫
U
|ZNT (u, ω)|2 dΦ(u).
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Without loss of generality, we will focus on the case where G(·) is the CDF of the standard

normal distribution. With the added randomness via {ξm}Mm=1, under certain regularity conditions

for M , we can show that SNT (ω) converges in distribution to a chi-squared distribution with one

degree of freedom almost surely conditional on the sample under the null hypothesis and diverges to

infinity at the rate
√
M under the alternative hypothesis. We now provide some intuitions. Suppose

we generate {ξm}Mm=1 using independent standard normal distributions. Then, conditional on the

sample, Vm,NT (ω) ∼ N(0,Y2
NT (ω)) for each m = 1, 2, ...,M . Note that YNT

a.s.→ ∞ as T → ∞ under

the null hypothesis. Let Ω1 = {ω : YNT (ω) → ∞ as T → ∞}. Then, P (Ω1) = 1 and we can restrict

our attention to the case where ω ∈ Ω1. Under the null hypothesis, we have that Vm,NT (ω) diverges

to +∞ or −∞ for each m with probability approaching (w.p.a.) 1/2, where G(0) = 1−G(0) = 1/2.

For any fixed u, we have that the Bernoulli random variable I(Vm,NT (ω) ≤ u) should approach

1 or 0 w.p.a. 1/2, and thus it will have an asymptotic mean 1/2. For this reason, a central limit

theorem (CLT) holds such that ZNT (u, ω) converges in distribution to a standard normal distribution

conditional on the sample ω for each fixed u. Therefore, we expect SNT (ω) to converge to a chi-

square distribution with one degree of freedom conditional on the sample ω. On the other hand, when

the alternative hypothesis holds, YNT
a.s.→ y as T → ∞ for some fixed constant y. Then, Vm,NT (ω)

follows a normal distribution with mean zero and variance y2 conditional on the sample. For any

fixed u ̸= 0, we can show that asymptotic mean of the Bernoulli random variable I(Vm,NT (ω) ≤ u)

will differ from 1/2 depending on the location of u. Hence, the mean of ZNT (u, ω) deviates from 0

conditional on the sample, and it diverges to infinity at the rate
√
M for each u ̸= 0. This mechanism

ensures the asymptotic power of the test statistic SNT (ω) under the alternative hypothesis.

The above discussion illustrates how and why one can use the randomization approach to test

hypotheses when the order of a statistic varies under the null and alternative hypotheses. This

motivates us to use D̂ as the basic statistic, given that it has different orders of magnitude under H1

and H2. Under certain regularity conditions stated in Section 3.1, we can show that D̂ = Oa.s.(1)

under H1 and D̂ = Oa.s.(T ) under H2.

When testing H1 against H2, i.e., H1 is the null and H2 is the alternative, we let YNT (ω) =

TD̂ (ω)−1 such that YNT
a.s.→ ∞ under the null hypothesis and YNT = Oa.s.(1) under the alternative

hypothesis. We then construct a test statistic by

S
(1)
NT (ω) = SNT (ω), (2.4)
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following the three steps described above with YNT (ω) = TD̂ (ω)−1. When testing H2 against

H1, we let YNT (ω) = D̂ (ω). Then the conditions that YNT
a.s.→ ∞ under the null hypothesis and

YNT = Oa.s.(1) under the alternative hypothesis are also satisfied. Following the same three steps,

we define

S
(2)
NT (ω) = SNT (ω) (2.5)

with YNT (ω) = D̂ (ω).

3 Asymptotic Results

Let P ∗ represent the probability law governing {ξm}Mm=1, conditional on the sample. Let d∗→ and E∗

denote convergence in distribution and expectation operator respectively under the probability law

P ∗. Furthermore, we use the notation a.s.-ω to denote conditional on the sample and for all samples

except a set of measure zero.

3.1 Assumptions

In this subsection, we first introduce some basic assumptions and then derive the asymptotic dis-

tributions of our tests under the respective null hypotheses and study the power properties under

the respective alternative hypotheses. Since we do not need to consistently estimate the number of

factors, or the factors and factor loadings under either H1 or H2, we do not require N → ∞. We

mainly rely on the large T asymptotics and allow N to be either divergent or fixed as T → ∞. When

both N and T diverge to infinity, we use (N,T ) → ∞ to signify that they pass to infinity jointly.

Let ςNT =
∑N

i=1

∑T
t=1

[
ε2it − E

(
ε2it
)]

. Let Λt = (λ1t, ..., λNt)
′ and ΣΛt = N−1Λ′

tΛt. Let maxi,t =

max1≤i≤N max1≤t≤T , and define maxi and maxt analogously. Let C be a generic positive constant

whose value may vary across places. For an R×R matrix A, we use A > 0 and A ≥ 0 to denote that

A is positive definite and positive semi-definite, respectively.

Assumption A.1 [Factors]: (i) {Ft}Tt=1 is an R × 1 weakly stationary time series process with

E(FtF
′
t) = ΣF > 0; (ii) maxtE∥Ft∥4 ≤ C, and (iii) maxr,l,r1,l1 maxt

∑T
s=1 |E{[FrtFlt − E (FrtFlt)]

[Fr1sFl1s − E (Fr1sFl1s)]}| ≤ C.

Assumption A.2 [Error Terms]: (i) maxi,tE|εit|4 ≤ C; (ii) (NT )−1
∑T

t=1

∑N
i=1E(ε2it) → σ2

ε as

T → ∞ or (N,T ) → ∞; and (iii) (NT )−1E
[
ς2NT

]
≤ C.
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Assumption A.3 [Deterministic Time-varying Factor Loadings]: (i) {λit}N,T
i=1,t=1 are nonran-

dom such that maxi,t ∥λit∥ ≤ C; (ii) T−1
∑T

t=1ΣΛt → ΣΛ ≥ 0 as T → ∞, and (iii) (NT )−1E
∣∣∣∑N

i=1

∑T
t=1 F

′
tλitεit

∣∣∣2
≤ C.

Assumption A.4 [Unit Root Factor Loadings]: (i) λit = λi(t−1) + νit, where E(νit) = 0,

maxi,tE ∥νit∥4 < ∞, and maxiE ∥λi0∥4 < ∞; (ii) vis and Ft are independent for all (i, t, s);

(iii) for each i = 1, . . . , N, there exists an R-dimensional standard Wiener process Wi (t) such

that maxtN
−1
∑N

i=1

∥∥∥λit − Σ
1/2
i Wi (t)

∥∥∥2 = oa.s.
(
T 1−2ϵ0

)
for some ϵ0 ∈ (0, 1/2) and some covari-

ance matrix Σi ≥ 0; and (iv) N−1
∑N

i=1 ∥Σi∥2 ≤ C, N−1
∑N

i=1Σi → Σ > 0 if N → ∞, and

Σ ≡ N−1
∑N

i=1Σi > 0 if N is fixed.

Assumption A.1 imposes conditions on the latent common factors. Following Stock and Wat-

son (2002), Han and Inoue (2015), and Su and Wang (2017), we assume that E (FtF
′
t) = ΣF is

homogeneous over t. This suggests that there is no structural change in the second moment of Ft.

It greatly facilitates the derivation of asymptotic results and can be regarded as an identification

condition. It is well known that the latent common factors and factor loadings are not separately

identifiable. A factor model with structural changes in common factors and time-invariant factor

loadings is equivalent to one with stationary common factors and time-varying factor loadings. Even

if there is no structural change in factor loadings or the second moment of common factors, we can

always write λ′
i0Ft = λ′

i0Q(t/T )−1Q(t/T )Ft = λ̆′
itF̆t for any nonsingular square matrix Q(t/T ) with

λ̆it ≡
[
Q(t/T )−1

]′
λi0 and F̆t ≡ Q(t/T )Ft being the time-varying factor loadings and common factors

with time-varying second moments. Assumption A.1(i) rules out this possibility. Assumption A.1(ii)

is a moment restriction commonly adopted in the factor model analysis. Assumption A.1(iii) imposes

weak dependence conditions on the process {Ft} , which can be verified under various weak depen-

dence conditions, including strong mixing, mixingale, near-Epoch dependence, and weak functional

dependence; see the Section A.3.2 in the online supplement of Barigozzi and Trapani (2022).

Assumption A.2 provides regularity conditions on the error terms. Assumption A.2(i) imposes

a moment restriction on the error process that is weaker than that in classical literature on factor

model analysis, such as Bai and Ng (2002) and Bai (2003). Assumption A.2(ii) allows for both time-

series and cross-sectional heteroskedasticity and requires the average of unconditional variances to

converge to a fixed constant. Assumption A.2(iii) imposes weak dependence conditions along both

the cross-section and time dimensions of the error terms.
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Assumption A.3 states the conditions on the time-varying factor loadings under H1. Assumption

A.3(i) requires that the factor loadings be nonrandom and uniformly bounded. These conditions are

similar to those in Su and Wang (2017) and can be relaxed at the cost of more lengthy arguments.

Note that we do not need to estimate the time-varying factor loadings consistently. Thus, we avoid

imposing regularity conditions such as those in the smooth structural change as in Su and Wang

(2017) or abrupt structural breaks as in Breitung and Eickmeier (2011), Chen et al. (2014), and Han

and Inoue (2015). Furthermore, Assumption A.3(i) also covers a special case that λit = λi0, which

is a constant parameter vector over time. Assumption A.3(ii) is weak, and it does not require the

limit matrix ΣΛ to be positive definite. This implies that we allow for weak factors under H1. Like

Assumption A.2(iii), Assumption A.3(iii) imposes weak dependence conditions on {F ′
tλitεit} along

both the cross-section and time dimensions.

Assumption A.4 provides the regularity conditions on the time-varying factor loadings under H2.

Assumption A.4(i) depicts a unit root process without drift. The reason that we do not consider

a drift term is two-fold. One is that when a drift term is present, the data matrix will exhibit

apparent explosive features. So one may directly distinguish H1 from H2 by simply plotting the time

series of Xit. Second, we can show that both our tests S
(1)
NT (ω) and S

(2)
NT (ω) are valid when a drift

term exists. We will elaborate this issue in Section 4.2. Assumption A.4(ii) imposes independence

between vis and Ft. Assumption A.4(iii) implies that the innovation process {vit} obeys a version of

functional central limit theorem where Σi is associated with the long-run variance of {vit} . It can

be verified under various primitive weak-dependence conditions on {vit} along the time dimension.

For example, when {vit, t ≥ 1} is a linear process as specified in Phillips and Solo (1992) satisfying

certain regularity conditions, one can apply Corollary 3.7 in Liu and Lin (2009) and show that

maxt

∥∥∥λit − Σ
1/2
i Wi (t)

∥∥∥ = oa.s.
(
T 1/3 log log T

)
for each i. Similarly, when {vit, t ≥ 1} is a mixingale

process satisfying certain regularity conditions, one can apply Theorem 2 in Eberlein (1986) and show

that maxt

∥∥∥λit − Σ
1/2
i Wi (t)

∥∥∥ = oa.s.
(
T 1/2−ϵ0

)
for some ϵ0 > 0. Assumption A.4(iii) restricts that the

latter order also holds when one averages over i, which is automatically satisfied if N is fixed. Note

that we allow {vit} to be correlated over i so that {Wi (t)} can be dependent over i. In addition, we

do not assume Σi to be positive definite for each i but do require that the cross-sectional average of

Σi be asymptotically positive definite in Assumption A.4(iv).
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3.2 Asymptotic results

To establish the asymptotic results for the proposed test statistics S
(1)
NT (ω) and S

(2)
NT (ω), we need to

show the strong convergence results for D̂ under both H1 and H2.

Proposition 1. (i) Suppose Assumptions A.1 to A.3 hold. Then D̂ = D1 + oa.s.(1), where D1 =

tr (ΣΛΣF ) + σ2
ε > 0.

(ii) Suppose Assumptions A.1, A.2, and A.4 hold. Then T−1D̂ = D2 + oa.s.(1), where D2 =

1
2tr (ΣΣF ) > 0.

We need to establish the almost sure convergence because the asymptotic distributions of our

randomized test statistics are derived under the probability law of {ξm}Mm=1 conditional on the

observed sample. Thus, we need to ensure that the obtained asymptotic results hold for all sample

paths except for those with measure zero. With Proposition 1, we now provide the asymptotic results

for the test statistics S
(1)
NT (ω) and S

(2)
NT (ω), respectively.

When testing H1 against H2, YNT (ω) = TD̂−1(ω). Recall that Ω1 ≡ {ω : YNT (ω) → ∞} and let

Ω2 ≡ {ω : YNT (ω) → D−1
2 }. Proposition 1 implies that P (Ω1) = 1 under Assumptions A.1–A.3, and

P (Ω2) = 1 under Assumptions A.1, A.2, and A.4. Let ⌊·⌋ denote the integer part of ·.

Theorem 1. Let M = ⌊T a⌋ with 0 < a < 2.

(i) S
(1)
NT (ω)

d∗→ χ2
1, a.s.-ω ∈ Ω1 as T → ∞ or (N,T ) → ∞ under Assumptions A.1–A.3.

(ii) For any nonrandom positive sequence cM = o(M), P ∗[S
(1)
NT (ω) > cM ] → 1 a.s.-ω ∈ Ω2 as T → ∞

or (N,T ) → ∞ under Assumptions A.1, A.2, and A.4.

The limiting distribution should be understood in the following sense: conditional on the sample

ω ∈ Ω1 with P (Ω1) = 1, S(1)
NT (ω) has a well-defined limiting distribution in terms of the law governing

the added randomness under the null hypothesis H1, and it diverges under the alternative hypothesis

H2. As explained by Corradi and Swanson (2006), the notion of size is different from the standard

one: classically, the significance level α of a test means that if a researcher applies the test B times

under the null hypothesis, then (s)he will falsely reject the null hypothesis ⌊αB⌋ times on average.

In contrast, in the context of randomized tests, α means that out of J researchers who apply the

test, about ⌊αJ⌋ of them will reject the null when this is true. Still, in our article, we obtain a

test statistic which, for a given level α, rejects the null with probability α when it is true and with

probability 1 when it is false as T → ∞ or (N,T ) → ∞.
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It is worth mentioning the impact of M on the asymptotic results. Theorem 1(ii) indicates that

S
(1)
NT (ω) diverges to infinity at the rate M . Although the asymptotic power of the test is positively

related to M , we note that a large M may distort the finite sample size performance. Note that we

require M → ∞, but at a slower rate than that of T 2. This condition ensures that the test statistic

follows an asymptotic chi-squared distribution under H1 and diverges under H2. Furthermore, we

can show that the asymptotic power of the test statistic under the alternative hypothesis depends

positively on a location parameter
∫
U |F (u)−G(0)|2dΦ(u), where F (·) is the limit CDF of Vm,NT (ω)

under H2. Note that F (·) is the CDF of N
(
0, D−1

2

)
when G(·) is the CDF of the standard normal

distribution. In this case, the larger |u| is, the larger |F (u)−1/2|2 will be. In practice, one can choose

a discrete random variable to generate u, e.g., a Bernoulli random variable taking values on −c and

c with probability 1/2 for some c > 0. Choosing a large c is beneficial for the power performance

of the test. However, it may harm the finite sample size performance if c is too large. For details,

please see the proof of Theorem 1.

Analogously, we provide the asymptotic results for the test statistic S
(2)
NT (ω).

Theorem 2. Let M = ⌊T a⌋ with 0 < a < 2.

(i) S
(2)
NT (ω)

d∗→ χ2
1, a.s.-ω ∈ Ω2 as T → ∞ or (N,T ) → ∞ under Assumptions A.1, A.2, and A.4.

(ii) For any nonrandom positive sequence cM = o(M), P ∗[S
(2)
NT (ω) > cM ] → 1 a.s.-ω ∈ Ω1 as T → ∞

or (N,T ) → ∞ under Assumptions A.1–A.3.

The intuition for the results in Theorem 2 is similar to that of Theorem 1. To put it simply,

we use the fact that D̂ diverges to infinity at the rate T almost surely under H2 but converges to a

fixed constant under H1. Following analogous steps as in the proof of Theorem 1, we can establish

Theorem 2 straightforwardly. Note that both test statistics follow an asymptotic pivotal chi-squared

distribution under the respective null hypotheses. Hence, one can use the asymptotic critical values

without relying on any data-dependent resampling method. In the simulation studies, we examine

the finite sample performance of both tests using the asymptotic critical values.

The proposed randomization tests are especially suitable for the goal of this paper. Using the

randomization approach, one does not need to estimate the factor model since the key input for both

test statistics is D̂, which is the trace of (NT )−1XX ′. The key difference between H1 and H2 is

captured by the distinct orders of magnitude of D̂ under the two specifications. The randomization

approach enables us to test the order of D̂ within a single observed sample using the generated
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randomness. As a result, we avoid the issue of consistent estimation for the common factors or factor

loadings under either type of specifications. Moreover, one does not need to worry about estimating

the number of common factors consistently under either H1 or H2. Although Su and Wang (2017)

provide a consistent estimator for the number of common factors under H1 with additional smooth

conditions, consistent estimation for the number of common factors under H2 is void in the literature.

Besides, as mentioned above, we do not need N → ∞, and when both N and T diverge to infinity,

there is no need to specify any requirement on the relative rates at which N and T diverge to infinity.

Furthermore, with slight modifications to the basic statistic of the randomized test, we can not

only test H1 against H2 but also do the opposite. In this sense, our tests are comprehensive. It can

provide a clear conclusion for the practitioners when adopting a suitable specification for time-varying

factor loadings.

4 Discussions

In this section, we discuss some empirically relevant issues associated with the proposed randomiza-

tion tests. One issue is that one needs to conduct a certain transformation of the data matrix before

applying the proposed tests. The other issue is that when the factor loadings are time-varying in

a deterministic way but with weak factors, or the factor loadings follow unit root processes with a

drift, we show that the proposed tests are still valid.

4.1 Scale invariance

Note that the finite sample performance of each test relies on the realized value of D̂. With one

observed sample, one can only have one observation for D̂, which can be sensitive to the scale of

data. For instance, we can generate a factor model under H1 but amplify the generated data using a

large constant. Then, our test S
(1)
NT (ω) may falsely reject the null hypothesis since D̂ behaves like an

unbounded statistic when inflated by a large constant in a finite sample. To avoid such a drawback,

we suggest that a practitioner conducts a rescaling of the data before applying the proposed tests.

This is a common practice for tests based on randomization. For example, when monitoring structural

changes in a factor model, Barigozzi and Trapani (2020) sequentially examine the order of magnitude

of the (r+1)-th sample eigenvalue, where r is the estimated number of common factors in the stable

period. To ensure scale invariance, they consider the ratio of the (r + 1)-th sample eigenvalue to
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the sum of all sample eigenvalues. When testing for the proper transformation of data, Corradi and

Swanson (2006) rescale the basic statistic using the first observation to achieve invariance to scalar

multiplication of the data.

In this paper, we adopt a similar approach to that of Corradi and Swanson (2006) to ensure scale

invariance. Specifically, we first compute the cross-sectional average and sample standard deviation

of the first time series vector observation:

X̄1 =
1

N

N∑
i=1

Xi1, and σ̂1 =

√√√√ 1

N − 1

N∑
i=1

(Xi1 − X̄1)2.

Then, we standardize the data matrix by X̃it = (Xit− X̄1)/σ̂1 for i = 1, . . . , N and t = 1, . . . , T , and

then compute D̃ = (NT )−1
∑N

i=1

∑T
t=1 X̃

2
it using the transformed data {X̃it}N,T

i=1,t=1. Using such a

procedure, the observed value of D̃ is invariant to level shifting or scalar multiplication of the data.

More importantly, we can show that the order of magnitude of D̃ is identical to that of D̂

computed based on the untransformed data. Using straightforward algebra, we can show that the

order of magnitude of D̃ is asymptotically equivalent to (D̂ − L)/σ̂2
1, where L is a location term

that depends on X̄1. Under Assumptions 1–3, we have X̄1 = Oa.s.(1) and σ̂1 = Oa.s.(1). Thus,

D̃ = Oa.s.(1). While under Assumptions 1, 2, and 4, we can still show that X̄1 = Oa.s.(1) and

σ̂1 = Oa.s.(1) since the first observation of a unit root process does not exhibit any explosive feature.

For this reason, the asymptotic leading term of D̃ is proportional to that of D̂, which diverges to

infinity almost surely. Hence, we conclude that under either H1 or H2, such a data transformation

will not change the order of magnitude of D̂. In this way, the test statistic is invariant to level

shifting or scalar multiplication of the data. Simulation studies demonstrate the excellent finite

sample performance of the proposed scale invariance transformation approach.

4.2 Weak factors and unit root with a drift

In this subsection, we show that the proposed tests are still valid when the factors are weak under

H1 or when the unit root process under H2 has a drift.

First, we consider the presence of weak factors under H1. As mentioned in the remark on Assump-

tion A.3(ii), we allow ΣΛ to be positive semi-definite or singular, which corresponds to the presence

of weak factors under H1. In the extreme case where ΣΛ = 0, we have D1 = σ2
ε > 0, which suffices to

ensure TD̂ to be Oa.s.(T ) under H1. As a result, the conclusions in Theorems 1 and 2 remain true

in such an extreme case.
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Now, we consider the presence of a drift term in the unit root process under H2 : λit = µi

+λi(t−1) + νit, where µi ̸= 0 for some i = 1, . . . , N. Let Σ̄µ = N−1
∑N

i=1 µiµ
′
i. Furthermore, let

Σµ = Σ̄µ when N is fixed and Σµ = limN→∞ Σ̄µ when N → ∞. For simplicity, we consider the case

where Σµ > 0. We first consider testing H1 against H2 using S
(1)
NT (ω). Noting that D̂

a.s.→ D1 under

H1, we have YNT = TD̂−1 a.s.→ ∞ under the null hypothesis. As a result, the CLT for Z0
NT (u, ω)

defined in the proof of Theorem 1 still holds and S
(1)
NT (ω) converges in distribution to χ2

1. Hence, the

test S
(1)
NT displays the correct asymptotic size using the asymptotic critical values. In contrast, when

H2 holds with a drift term, following the proof of Proposition 1, we can show that

T−2D̂ = T−2D̂1 + oa.s. (1)
a.s.→ D3 > 0 (4.1)

where

T−2D̂1 =
1

NT 3

N∑
i=1

T∑
t=1

F ′
tλitλ

′
itFt =

1

NT 3

N∑
i=1

T∑
t=1

t2F ′
tµiµ

′
iFt + oa.s. (1)

= tr
(
Σ̄µΣF

) 1

T 3

T∑
t=1

t2 + oa.s. (1)
a.s.→ 1

3
tr (ΣµΣF ) ≡ D3.

It follows that YNT = TD̂−1 = Oa.s.

(
T−1

)
. Then, Vm,NT (ω) = YNT (ω)ξm converges to zero for each

m and each ω ∈ Ω3 = {ω : TYNT (ω) → D−1
3 }. For each fixed u ̸= 0, the Bernoulli random variable

I(Vm,NT (ω) ≤ u) should be 0 or 1 w.p.a. 0 or 1 depending on the sign of u. Thus, we can show that

ZNT (u, ω) will not converge to a normal distribution since the asymptotic mean of I(Vm,NT (ω) ≤ u),

which equals 0 or 1 depending on the sign of u, is different from G(0). Such a mechanism ensures

that S
(1)
NT (ω) has power against H2 in which the unit root factor loading process has a drift term. In

particular, the result in Theorem 1(ii) still holds.

Next, we investigate the test of H2 against H1 using S
(2)
NT (ω) when the unit-root type factor loading

process under H2 has a drift term. When Σµ > 0, YNT = D̂ diverges to infinity almost surely at the

rate T 2 under the null hypothesis by (4.1). Following the arguments used in the proof of Theorem

1, we can show that S
(2)
NT (ω) still follows an asymptotic chi-squared distribution with one degree of

freedom conditional on the sample ω. Under the alternative hypothesis, YNT = D̂
a.s.→ D1 > 0, and

the result in Theorem 2(ii) continues to hold.

In sum, the above two paragraphs indicate that the theory developed in Theorems 1 and 2

continues to hold when there is a drift term in the unit root process for the time-varying factor

loadings under H2. This is also the case when we have weak factors under H1 and a unit root process
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with a drift term under H2. Consequently, the results in Theorems 1 and 2 are robust to the presence

of weak factors under H1 or/and a unit root process with a drift term under H2.

The above discussions imply that as long as the orders of magnitude differ under two hypotheses,

H1 and H2, it is possible to propose a pair of randomization tests to distinguish them. For example,

we can consider the specification of a unit-root type factor loading process without a drift under

H2 versus the specification of a unit-root factor loading process with a drift under H2′ . Since D̂

diverges to infinity at rates T and T 2 under H2 and H2′ , respectively, one can test H2 against H2′ by

using YNT = T 2D̂−1 in the testing procedure and test H2′ against H2 by using YNT = T−1D̂ in the

testing procedure. Then the resulting test statistics have the same asymptotic properties as stated

in Theorems 1 and 2.

5 Monte Carlo Studies

In this section, we conduct simulation studies to examine the finite sample performance of the

proposed tests.

5.1 Data generating processes

We generate the data under the following large-dimensional factor model with R = 2 common factors:

Xit = λ′
itFt + εit,

for i = 1, ..., N and t = 1, ..., T, where Ft ≡ (F1t, F2t)
′ , with F1t = 0.2 + 0.6F1(t−1) + z1t, z1t ∼

i.i.d.N(0, 1− 0.62), and F2t = 0.2 + 0.3F2(t−1) + z2t, z2t ∼ i.i.d.N(0, 1− 0.32).

Let λi0 = (λi0,1, λi0,2)
′ with λi0,1 ∼ i.i.d.N(0, 1) and λi0,2 ∼ i.i.d.U(0, 1) for i = 1, ..., N . Set

b1 = 0.2 and b2 = 0.5, which are used to define the magnitude of structural changes below. Let

G(y; ς, γ) = [1 + e−ς
∏p

l=1(y−γl)]−1 be the logistic function with the scale parameter ς and location

parameter vector γ = (γ1, ..., γp)
′. To examine the size and power performance of the proposed tests,

we consider the following designs for the factor loading λit ≡ (λit,1, λit,2)
′:

DGP 1: λit = λi0 for all t = 1, . . . , T ;

DGP 2: λit,k =

 λi0,k, for 1 ≤ t ≤ 0.5T

λi0,k + bk, for 0.5T < t ≤ T
, for k = 1, 2;
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DGP 3: λit,1 =


λi0,1, for 0.1T < t ≤ 0.2T and 0.7T < t ≤ 0.8T

λi0,1 + b1, for 0.4T < t ≤ 0.5T

λi0,1 − b2, otherwise

, and

λit,2 =

 λi0,2, for 1 ≤ t ≤ 0.6T

λi0,2 + b2, for 0.6T < t ≤ T
;

DGP 4: λit,k = bkλi0,kgk,t for k = 1, 2, where

 g1,t = g1(t/T ) = 3[1− e−3(t/T )2 ]

g2,t = g2(t/T ) = [1 + e20(t/T−0.5)]−1
;

DGP 5: λit,1 = λi0,k + bkhk,t for k = 1, 2, where

 h1,t = h1(t/T ) = [2− e−4(t/T−0.5)2 ]

h2,t = h2(t/T ) = sin(2πt/T )
;

DGP 6: λit,k =

 N−0.2λi0,k, for 1 ≤ t ≤ 0.5T

N−0.2(λi0,k + bk), for 0.5T < t ≤ T
, for k = 1, 2;

DGP 7: λit = λi(t−1) + νit, where νit ∼ i.i.d.N(0, I2).

DGP 8: λit = µi + λi(t−1) + νit, where νit ∼ i.i.d.N(0, I2) and µi = (µi1, µi2)
′ with µik ∼ i.i.d.U(0, 1)

for k = 1, 2.

For each DGP, we consider five cases of error terms {εit}: (i) the i.i.d. case, where εit ∼

i.i.d.N(0, 1); (ii) the heteroskedastic case, where εit follows independent N(0, σ2
it) distribution with

σit = vtwi, where vt = 3
[
1 + exp

(
−10 (t/T − 0.5)2

)]
for t = 1, ..., T , and wi ∼ i.i.d.U(0.5, 1.5) for

i = 1, ..., N ; (iii) the cross-sectionally dependent case, where εt ∼ i.i.d.N(0,Σε); (iv) the serially de-

pendent case, where εit = 0.5εi(t−1)+vit with vit ∼ i.i.d.N(0, 1); (v) the cross-sectionally and serially

dependent case, where εt = 0.5εt−1+vt, vt ∼ i.i.d.N(0,Σv). Note that we let Σε = Σv = (cij)i,j=1,...,N

with cij = 0.5|i−j| for cases (iii) and (v).

DGPs 1–6 satisfy H1. DGP 1 depicts a time-invariant factor model, which can be viewed as a

special case of H1. We note that there exists intensive literature on testing constancy of factor loadings

in a static factor model, e.g., Breitung and Eickmeier (2011), Chen et al. (2014), Han and Inoue

(2015), Su and Wang (2017, 2020), and Fu et al. (2022b). DGPs 2–6 describe various specifications

of time-varying factor loadings. DGP 2 admits a single abrupt structural break in the factor loadings.

Such a type of factor loadings has been widely adopted in the related literature, e.g., Breitung and

Eickmeier’s (2011) equation (4), Han and Inoue’s (2015) DGP.A1, Su and Wang’s (2017) DGP.4,

and Su and Wang’s (2020) DGP.P1. DGP 3 allows for multiple abrupt structural breaks, adopted
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by Su and Wang (2017, 2020) and Fu et al. (2022b). DGP 4 depicts monotonic smooth structural

changes, in which the first and second factor loadings λit,1 and λit,2 are monotonically increasing and

decreasing functions of the rescaled time index t/T , respectively. DGP 5 describes non-monotonically

changing time-varying factor loadings. Moreover, DGP 6 allows us to examine the size and power

performance of the proposed tests when the time-varying factor loadings are weak since the sample

covariance matrix of the factor loadings shrinks to 0 as the sample size grows before and after the

break. DGPs 7 and 8 describe time-varying factor models with a unit root type of factor loadings.

DGP 7 does not contain a drift term, which satisfies H2. DGP 8 does not satisfy either H1 or H2

since it depicts a unit root process with a drift. However, as we have explained in Section 4.2, we

can show that both tests S
(1)
NT (ω) and S

(2)
NT (ω) are asymptotically valid under DGP 8.

5.2 Simulation results

When testing H1 against H2, we use DGPs 1–6 to examine the size performance and DGPs 7–8

to examine the power performance of S
(1)
NT (ω). In contrast, when testing H2 against H1, we use

DGPs 7–8 to examine the size performance and DGPs 1–6 to examine the power performance of

S
(2)
NT (ω). We set the number of replications to be 1000. We consider various combinations of sample

sizes N = 100, 200 and T = 100, 200. We generate {ξm}Mm=1 using independent standard normal

distributions, adopt a binary distribution for Φ(·), which has probability mass 1/2 at
√
2 and −

√
2,

and set M = ⌊T a⌋ with a = 0.8, 1, and 1.2. We construct the test statistics S
(1)
NT (ω) and S

(2)
NT (ω)

according to the steps described in Section 2.2. We use the asymptotic critical values of χ2
1 and

examine the size and power performance of the proposed tests at the 5% and 10% significance levels.

Tables 1–3 report the size and power performance of S(1)
NT (ω) when testing H1 against H2. Note

that DGPs 1–6 satisfy H1, describing various types of deterministic time-varying factor loadings.

The empirical rejection rates of S
(1)
NT (ω) are close to the corresponding nominal levels. The size

performance usually improves with T but not N since the asymptotic theory of our tests is derived

based on large T . DGPs 7 and 8 satisfy H2 without and with a drift. We note that the power

performance of S(1)
NT (ω) increases with T since M only depends on T . Furthermore, comparing the

power performance of S(1)
NT (ω) under various values of a, we note that the empirical rejection rates

increase with a. This is consistent with the established asymptotic results.

Tables 4–6 show the finite sample power and size performance of S(2)
NT (ω) when testing H2 against

H1. Now, we have that DGPs 7 and 8 satisfy the null hypothesis, but DGPs 1–6 depict time-varying
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factor loadings under the alternative hypothesis. For each fixed a, we observe that S
(2)
NT (ω) exhibits

reasonable size performance under DGPs 7 and 8 and satisfactory power performance under DGPs 1–

6. Although the considered sample sizes are relatively small, the empirical rejection rates of S(2)
NT (ω)

are close to unity under various values of a. This shows the excellent power of the proposed test.

Furthermore, S(2)
NT (ω) displays robustness to a unit root process with or without a drift. The empirical

rejection rates of S(2)
NT (ω) are close to the nominal levels under both DGPs 7 and 8. Analogous to the

results of S(1)
NT (ω) in testing H1 against H2, a larger value of a can incur better power performance

but an oversize issue. This is consistent with the established asymptotic results.

We have also examined the finite sample performance of the proposed tests under M = ⌊T a⌋ with

a = 1.5. The power performance of both S
(1)
NT (ω) and S

(2)
NT (ω) improve since the asymptotic power

of the proposed tests is positively related to M . However, the size performance of both tests is not

comparable to those under a smaller a. The oversize issue arises since the asymptotic higher-order

terms of the proposed tests shrink to zero at a slower rate with a larger M .

6 Empirical Applications

In this section, we consider two empirical applications of the proposed tests in macroeconomics.

6.1 U.S. macroeconomic dataset

We now use the proposed tests to examine the time-varying feature of the U.S. macroeconomic

dataset. Most existing studies, such as Stock and Watson (2009), Su and Wang (2017), and Mikkelsen

et al. (2019), construct a factor model for this dataset and document that the factor loadings are

time-varying. Su and Wang (2017) find strong evidence of structural changes in factor loadings

and model the time-varying factor loadings as unknown piece-wise smooth functions of the rescaled

time. Mikkelsen et al. (2019) propose a time-varying factor model where the factor loadings evolve

as VAR processes and then apply the model to the dataset of Stock and Watson (2009). For the

majority of the variables, they find evidence of time-varying factor loadings and show that a large

increase in the in-sample fit of the common component can be obtained by incorporating time-

varying factor loadings. Furthermore, several empirical studies apply the time-varying factor model to

extract valuable information based on the U.S. macroeconomic dataset and explore various interesting

applications. For example, Baumeister et al. (2013) and Korobilis (2013) extract common factors
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Table 1: Empirical rejection rates of S(1)
NT (ω) with M = ⌊T 0.8⌋

N T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. errors
100 100 6.2 11.4 4.3 9.9 3.9 9.6 5.8 10.1 4.4 9.3 4.3 9.5 77.0 86.0 100 100
200 100 4.7 8.0 4.8 9.6 4.5 9.9 6.0 11.8 3.4 8.4 5.8 12.1 76.4 85.2 100 100
100 200 5.0 9.7 5.3 9.6 6.0 10.2 5.8 10.9 5.7 10.8 4.3 9.7 87.4 92.3 100 100
200 200 6.5 12.6 4.4 11.0 3.9 9.3 4.7 9.8 5.2 10.0 4.7 9.4 86.9 91.5 100 100

heteroskedastic errors
100 100 4.8 10.5 4.8 10.1 4.7 9.2 5.2 9.8 5.5 10.3 4.2 10.0 73.2 83.5 100 100
200 100 4.0 8.9 4.1 9.1 4.1 8.7 3.5 8.4 4.5 10.2 4.7 9.0 73.8 82.4 100 100
100 200 5.6 11.7 5.1 10.2 5.5 11.1 3.8 8.1 5.3 10.7 5.5 10.7 88.5 92.6 100 100
200 200 4.2 8.9 4.7 11.1 5.1 10.4 4.6 10.1 5.0 10.6 5.0 10.0 85.5 92.6 100 100

cross-sectionally dependent errors
100 100 3.0 10.2 4.2 10.7 3.8 8.3 3.8 9.5 4.4 9.9 4.6 8.9 75.7 85.4 100 100
200 100 3.8 9.1 4.8 8.9 5.6 10.9 5.2 9.9 5.2 11.4 5.2 10.0 76.1 84.2 100 100
100 200 4.6 9.1 3.5 9.1 6.6 11.7 4.3 8.3 4.7 9.7 6.6 12.2 87.0 92.3 100 100
200 200 5.3 11.2 4.4 8.4 3.8 9.8 5.7 10.3 3.8 10.2 5.5 10.3 86.5 92.3 100 100

serially dependent errors
100 100 5.2 9.7 4.2 7.4 4.5 9.2 4.4 9.2 4.6 10.6 5.3 9.9 74.8 82.5 100 100
200 100 3.5 7.7 4.5 8.3 5.0 10.0 4.5 10.3 4.4 9.1 5.1 10.1 73.9 83.5 100 100
100 200 3.8 9.3 4.7 9.2 3.3 8.3 5.6 10.0 4.0 8.0 5.8 10.3 80.8 89.4 100 100
200 200 5.0 9.7 5.7 12.1 4.6 10.6 4.5 8.6 3.4 8.4 5.3 9.9 85.0 91.1 100 100

cross-sectionally and serially dependent errors
100 100 3.2 7.6 3.2 8.4 4.8 9.9 4.5 9.5 4.8 9.0 5.0 10.8 71.4 82.5 100 100
200 100 5.2 9.8 5.5 9.8 4.7 9.3 4.8 9.1 4.0 8.9 5.5 10.8 76.0 84.2 100 100
100 200 6.7 11.7 5.4 9.2 3.8 8.9 5.1 9.7 5.4 10.4 5.1 10.4 85.4 91.9 100 100
200 200 3.9 8.1 5.6 9.9 5.4 9.9 4.9 9.8 4.0 9.1 4.4 8.9 85.3 91.7 100 100

Note: The entries report the percentage of rejections over 1000 replications.
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Table 2: Empirical rejection rates of S(1)
NT (ω) with M = T

N T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. errors
100 100 5.2 10.0 5.4 9.5 5.5 10.7 4.4 9.8 5.5. 11.6 6.3 11.7 91.1 95.5 100 100
200 100 3.9 7.3 5.3 11.2 5.5 9.5 5.2 9.4 4.8 10.1 5.6 9.7 93.5 96.3 100 100
100 200 4.6 8.2 5.6 9.2 4.7 9.5 6.2 10.3 4.7 8.8 5.1 10.1 97.4 98.4 100 100
200 200 4.8 9.4 4.0 8.8 5.9 10.2 6.1 10.2 4.7 11.1 5.4 9.6 97.1 98.9 100 100

heteroskedastic errors
100 100 6.2 10.2 3.7 9.4 5.0 10.5 4.9 10.4 4.0 9.9 4.8 9.4 91.9 95.8 100 100
200 100 4.2 9.8 5.1 9.9 3.9 9.6 5.1 9.7 6.6 11.1 5.5 11.2 92.0 95.2 100 100
100 200 4.6 9.4 4.5 9.7 5.8 10.3 4.7 9.5 6.4 11.2 4.8 9.1 97.8 99.3 100 100
200 200 5.6 11.0 4.3 10.0 5.4 9.4 6.4 10.4 4.1 8.8 5.6 9.7 96.4 98.3 100 100

cross-sectionally dependent errors
100 100 4.3 9.0 6.4 9.8 3.7 8.8 5.5 10.2 4.6 10.2 5.0 9.8 92.5 95.0 100 100
200 100 4.2 9.0 3.5 8.7 4.9 9.7 5.1 10.7 5.5 10.3 5.9 10.8 92.0 95.6 100 100
100 200 5.7 10.1 4.4 8.7 5.6 9.6 4.8 9.7 4.8 8.7 5.6 11.1 98.2 99.3 100 100
200 200 5.2 10.6 5.0 11.4 4.9 8.5 5.8 10.4 3.9 8.1 5.9 10.0 98.0 99.1 100 100

serially dependent errors
100 100 5.7 10.1 5.2 11.0 5.3 9.7 5.0 10.0 4.5 10.1 5.8 9.5 89.2 93.6 100 100
200 100 4.7 9.2 5.4 10.3 4.9 10.9 5.8 10.2 4.4 9.1 6.1 10.6 91.7 95.5 100 100
100 200 5.8 10.9 4.3 8.5 4.7 10.2 6.2 10.4 5.7 11.7 5.1 9.9 97.0 98.7 100 100
200 200 6.1 10.7 5.0 8.6 4.4 9.0 4.1 8.4 5.2 8.9 4.7 8.9 96.8 98.2 100 100

cross-sectionally and serially dependent errors
100 100 4.2 10.0 4.4 10.1 4.0 9.8 4.2 10.1 6.6 9.9 5.1 10.2 92.9 96.3 100 100
200 100 5.0 9.9 3.6 7.9 4.3 9.0 4.8 10.0 6.3 9.7 6.1 11.6 90.6 94.5 100 100
100 200 4.1 8.5 5.3 10.5 4.0 8.7 5.8 10.3 5.2 10.3 6.2 10.7 96.4 98.4 100 100
200 200 3.9 8.8 4.6 9.5 3.5 8.8 5.2 9.5 5.1 8.5 6.4 9.6 97.8 98.6 100 100

Note: The main entries report the percentage of rejections over 1000 replications.
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Table 3: Empirical rejection rates of S(1)
NT (ω) with M = ⌊T 1.2⌋

N T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. errors
100 100 5.7 10.9 5.9 11.7 4.5 11.4 6 10.2 5.0 10.0 5.7 11.0 98.4 99.3 100 100
200 100 5.1 9.0 5.8 10.8 6.6 10.8 4.2 8.1 5.1 11.0 4.4 9.5 98.3 99.0 100 100
100 200 5.5 10.6 4.7 9.5 4.7 9.7 4.3 9.0 4.2 9.7 5.5 10.6 99.9 100 100 100
200 200 5.1 10.2 4.1 8.3 4.5 9.0 4.8 10.0 5.0 10.0 4.7 8.8 99.8 100 100 100

heteroskedastic errors
100 100 5.7 11.5 5.4 10.8 4.9 10.1 6.4 12.2 5.9 12.0 5.5 9.7 97.6 98.6 100 100
200 100 5.5 11.9 4.9 11.6 6.2 10.8 5.1 11.6 5.9 11.6 5.9 10.5 97.5 99.1 100 100
100 200 4.6 10.5 5.9 11.4 5.6 10.3 4.9 9.9 5.0 11.3 5.6 10.0 99.7 99.9 100 100
200 200 5.9 11.4 5.5 11.2 6.7 12.7 4.5 8.6 5.1 9.4 5.9 11.2 100 100 100 100

cross-sectionally dependent errors
100 100 4.0 10.1 5.1 11.7 7.7 13.8 4.5 10.1 6.2 10.9 5.9 9.9 97.8 98.7 100 100
200 100 4.6 10.4 6.2 10.7 5.7 11.1 5.9 10.4 4.6 9.9 5.7 10.2 98.2 98.9 100 100
100 200 5.3 8.6 5.4 9.9 5.1 9.5 5.8 10.0 4.9 11.3 6.0 11.8 99.9 99.9 100 100
200 200 5.0 10.3 5.5 10.9 4.9 12.2 5.2 9.3 5.1 9.8 4.9 9.6 100 100 100 100

serially dependent errors
100 100 6.6 12.3 4.9 10.1 5.2 10.5 5.4 11.1 5.9 12.0 5.3 10.4 97.9 98.9 100 100
200 100 4.9 10.0 5.8 10.9 6.8 13.0 5.7 10.8 5.4 10.9 5.4 10.4 97.7 99.2 100 100
100 200 4.9 10.2 4.9 10.9 4.4 8.2 5.5 10.4 6.2 11.5 5.1 10.9 99.5 99.9 100 100
200 200 3.8 8.9 4.5 9.6 4.7 9.4 4.4 9.3 5.1 9.7 4.4 8.4 99.6 100 100 100

cross-sectionally and serially dependent errors
100 100 4.7 9.4 4.6 11 5.3 11.1 5.4 9.6 5.6 11.5 5.7 10.8 98.7 99.4 100 100
200 100 5.1 10.4 5.8 11.2 5.8 12.1 5.3 11.4 5.3 10.8 4.7 10.7 98.2 99.1 100 100
100 200 6.0 10.3 6.5 10.9 4.3 9.6 4.4 9.4 5.4 11.3 5.4 10.2 99.6 99.9 100 100
200 200 5.2 10.2 5.4 10.3 3.3 8.5 6.2 11.3 5.6 10.7 5.7 10.4 99.6 100 100 100

Note: The main entries report the percentage of rejections over 1000 replications.
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Table 4: Empirical rejection rates of S(2)
NT (ω) with M = ⌊T 0.8⌋

N T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. errors
100 100 96.3 98.6 95.3 98.8 94.6 98.4 100 100 93.9 97.6 100 100 4.9 10.4 5.8 10.4
200 100 97.4 99.4 92.9 97.7 94.4 97.7 100 100 94.4 98.0 100 100 5.4 10.9 3.2 8.8
100 200 99.9 100 99.0 99.8 99.2 99.9 100 100 99.0 99.8 100 100 4.5 9.9 5.4 10.2
200 200 99.9 99.9 99.1 99.9 99.4 99.8 100 100 99.6 99.8 100 100 3.7 8.7 5.6 8.7

heteroskedastic errors
100 100 88.2 95.2 83.6 92.4 86.4 93.6 95.7 99 87.6 95.4 97.2 99.4 4.2 9.9 4.7 10.7
200 100 90.0 95.7 86.4 92.9 86.0 93.1 97.5 99.2 86.8 95.5 98.6 99.6 5.2 9.5 3.4 9.5
100 200 98.8 99.7 97.2 99.2 96.4 99.1 99.5 100 97.0 99.0 99.9 100 4.2 10.3 4.3 7.4
200 200 98.7 99.7 97.4 99.6 96.5 99.3 100 100 97.8 99.3 100 100 4.4 9.8 4.2 8.0

cross-sectionally dependent errors
100 100 96.2 98.6 91.7 97.1 93.4 95.9 99.9 100 93.0 97.4 100 100 4.3 10.3 5.8 12.0
200 100 96.4 98.9 94.7 97.7 94.0 98.1 100 100 95.7 98.4 100 100 4.2 8.2 4.5 8.9
100 200 99.6 99.9 98.8 99.6 99.2 99.9 100 100 99.4 99.8 100 100 4.5 9.9 4.8 9.5
200 200 99.9 100 99.6 99.9 99.3 99.8 100 100 99.7 99.9 100 100 3.8 8.3 5.6 10.3

serially dependent errors
100 100 99.1 99.8 97.5 98.9 97.0 98.7 100 100 98.0 99.8 100 100 4.9 10.1 4.1 9.7
200 100 99.2 99.8 97.9 99.6 97.9 99.2 100 100 98.2 99.8 100 100 6.2 10.3 4.7 10.1
100 200 100 100 99.4 100 100 100 100 100 99.6 100 100 100 3.9 8.6 6.0 8.9
200 200 100 100 100 100 99.8 100 100 100 99.9 100 100 100 3.4 8.5 6.2 9.2

cross-sectionally and serially dependent errors
100 100 98.9 99.6 96.4 98.9 95.9 98.6 99.9 100 97.5 99.1 100 100 5.8 11.0 4.9 9.1
200 100 99.0 99.8 97.7 99.5 97.6 99.3 100 100 98.3 99.6 100 100 5.7 11.1 5.4 11.4
100 200 100 100 99.7 100 99.8 100 100 100 100 100 100 100 4.5 9.4 5.8 9.2
200 200 99.9 100 100 100 99.9 100 100 100 99.9 100 100 100 5.2 10.5 4.5 8.4

Note: The main entries report the percentage of rejections over 1000 replications.
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Table 5: Empirical rejection rates of S(2)
NT (ω) with M = T

N T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. errors
100 100 99.9 100 99.9 100 100 100 100 100 99.9 99.9 100 100 5.6 12.4 5.8 10.2
200 100 100 100 99.9 100 100 100 100 100 100 100 100 100 5.4 12.0 5.9 9.5
100 200 100 100 100 100 100 100 100 100 100 100 100 100 4.1 10.1 6.2 12.3
200 200 100 100 100 100 100 100 100 100 100 100 100 100 5.3 10.4 5.6 12.5

heteroskedastic errors
100 100 99.8 100 99.2 99.9 99.3 99.9 100 100 99.7 99.9 100 100 5.9 12.9 6.5 9.3
200 100 100 100 99.7 100 99.8 100 100 100 99.8 99.9 100 100 5.9 11.7 4.5 8.1
100 200 100 100 100 100 100 100 100 100 100 100 100 100 5.4 9.0 6.4 10.8
200 200 100 100 100 100 100 100 100 100 100 100 100 100 4.7 9.1 5.4 9.8

cross-sectionally dependent errors
100 100 100 100 99.6 99.9 99.8 100 100 100 100 100 100 100 5.5 12.1 4.7 8.7
200 100 100 100 99.9 100 100 100 100 100 100 100 100 100 5.4 11.1 5.7 9.4
100 200 100 100 100 100 100 100 100 100 100 100 100 100 5.6 11.2 6.0 11.8
200 200 100 100 100 100 100 100 100 100 100 100 100 100 4.2 8.0 5.9 9.5

serially dependent errors
100 100 100 100 100 100 100 100 100 100 100 100 100 100 6.5 12.4 6.6 10.4
200 100 100 100 100 100 100 100 100 100 100 100 100 100 4.9 10.7 5.7 10
100 200 100 100 100 100 100 100 100 100 100 100 100 100 5.0 9.0 5.0 9.5
200 200 100 100 100 100 100 100 100 100 100 100 100 100 5.7 11.4 4.9 9.8

cross-sectionally and serially dependent errors
100 100 100 100 100 100 100 100 100 100 99.9 100 100 100 6.0 11.7 5.7 9.4
200 100 100 100 99.9 100 100 100 100 100 100 100 100 100 5.0 12.1 4.8 9.5
100 200 100 100 100 100 100 100 100 100 100 100 100 100 4.4 10.8 5.7 10.7
200 200 100 100 100 100 100 100 100 100 100 100 100 100 5.3 9.2 6.4 11.4

Note: The main entries report the percentage of rejections over 1000 replications.
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Table 6: Empirical rejection rates of S(2)
NT (ω) with M = ⌊T 1.2⌋

N T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. errors
100 100 100 100 100 100 100 100 100 100 100 100 100 100 8.6 15.7 4.8 8.7
200 100 100 100 100 100 100 100 100 100 100 100 100 100 7.7 14.5 3.4 7.7
100 200 100 100 100 100 100 100 100 100 100 100 100 100 6.2 11.7 5.2 11.3
200 200 100 100 100 100 100 100 100 100 100 100 100 100 5.9 12.5 5.2 9.6

heteroskedastic errors
100 100 100 100 100 100 100 100 100 100 100 100 100 100 6.7 14.3 4.1 9.8
200 100 100 100 100 100 100 100 100 100 100 100 100 100 6.8 13.6 4.1 9.7
100 200 100 100 100 100 100 100 100 100 100 100 100 100 6.3 12.2 5.4 10.7
200 200 100 100 100 100 100 100 100 100 100 100 100 100 6.3 13.3 4.9 10.8

cross-sectionally dependent errors
100 100 100 100 100 100 100 100 100 100 100 100 100 100 8.4 16.6 4.6 9.9
200 100 100 100 100 100 100 100 100 100 100 100 100 100 7.1 14.2 5.9 11.1
100 200 100 100 100 100 100 100 100 100 100 100 100 100 5.8 10.6 4.3 9.5
200 200 100 100 100 100 100 100 100 100 100 100 100 100 6.0 11.9 6.1 11.9

serially dependent errors
100 100 100 100 100 100 100 100 100 100 100 100 100 100 9.3 17.4 4.1 9.9
200 100 100 100 100 100 100 100 100 100 100 100 100 100 7.0 14.8 4.5 9.7
100 200 100 100 100 100 100 100 100 100 100 100 100 100 6.4 12.8 4.8 9.1
200 200 100 100 100 100 100 100 100 100 100 100 100 100 5.4 12.9 4.4 10.2

cross-sectionally and serially dependent errors
100 100 100 100 100 100 100 100 100 100 100 100 100 100 7.2 13.8 5.6 11.3
200 100 100 100 100 100 100 100 100 100 100 100 100 100 8.8 17.6 5.4 10.2
100 200 100 100 100 100 100 100 100 100 100 100 100 100 6.5 13.0 4.3 9.2
200 200 100 100 100 100 100 100 100 100 100 100 100 100 6.4 12.2 4.6 8.9

Note: The main entries report the percentage of rejections over 1000 replications.
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from the U.S. macroeconomic dataset. They specify the factor loadings as random walk processes

and then study the transmission mechanism of the U.S. monetary policy. Eickmeier et al. (2015)

extract common factors from a large balanced dataset containing 316 quarterly U.S. time series using

the time-varying factor model and further identify monetary policy shocks and their transmission to

the economy. They specify both the factor loadings and VAR coefficients as random walk processes.

Nevertheless, although these studies find strong evidence of time-varying factor loadings, whether the

time-varying factor loadings are random walk processes or deterministic functions of time remains

an open question.

Now we use our tests to examine the specification of the time-varying factor loadings for the

U.S. macroeconomic dataset. Specifically, we use the dataset first constructed by Stock and Watson

(2012) and then extended by Cheng et al. (2016). The dataset consists of N = 102 time series of

monthly macroeconomic and financial indicators spanning 1985:M1 to 2013:M1 with T = 337. To

implement our tests, we follow the pre-settings in Section 5 to generate {ξm}Mm=1 using independent

standard normal distributions, adopt a binary distribution for Φ(·), which has probability mass 1/2

at
√
2 and −

√
2, and set M = ⌊T a⌋ with a = 0.8, 1, 1.2, and 1.5, respectively.

Before applying our tests, we use the tests of Chen et al. (2014) and Han and Inoue (2015) to

first test for structural changes in the factor loadings. Given that their tests require the estimated

common factors, we set the selected number of common factors to be 4, which is determined using

Bai and Ng’s (2002) information criteria ICp1 and ICp2. Both Chen et al.’s (2014) sup-LM and

sup-Wald tests and Han and Inoue’s (2015) sup-LM and sup-Wald tests reject the null hypothesis

of no structural changes in factor loadings at the 5% significance level. As mentioned above, if the

time-varying factor loadings evolve as stationary VAR processes, the tests of Chen et al. (2014) and

Han and Inoue (2015) will not reject the null hypothesis. Hence, we find significant evidence that

the time-varying factor loadings do not evolve as stationary stochastic processes. Now, we use our

tests to investigate whether the time-varying factor loadings follow deterministic functions of time

or random walk processes.

Table 7 reports the values of our test statistics and the corresponding P -values under different

choices of M . It shows that the test using S
(1)
NT (ω) cannot reject the null hypothesis of deterministic-

varying factor loadings. In contrast, the test using S
(2)
NT (ω) significantly rejects the null hypothesis

of the unit-root type factor loadings. Hence, we find strong evidence that the time-varying factor

loadings do not follow unit root processes. It implies that deterministic functions of time should be
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Table 7: Empirical results for the U.S. macroeconomic dataset
Testing H1 against H2 Testing H2 against H1

S
(1)
NT (ω) P -value S

(2)
NT (ω) P -value

a = 0.8 0.0606 0.8055 56.5152 0.0000
a = 1 0.0526 0.8185 159.3474 0.0000
a = 1.2 0.0627 0.8022 442.9943 0.0000
a = 1.5 0.2850 0.5935 2200.5943 0.0000

Note: Entries under “S(1)
NT (ω)” and “S(2)

NT (ω)” are the values of the corresponding test statistics. En-
tries under under “P -value” are the corresponding asymptotic P -values based on χ2(1) distribution.

adopted when modeling the time-varying features of the factor loadings in this application, which is

consistent with Su and Wang’s (2017) results. Furthermore, we note that the conclusion is robust to

the choices of M . Although the P -values under S
(1)
NT (ω) decrease with increasing values of M , the

conclusion remains unchanged.

6.2 Global macroeconomic and financial dataset

In this subsection, we apply our tests to examining the time-varying feature of the global macroe-

conomic and financial dataset used by Mumtaz and Musso (2019). They propose a dynamic fac-

tor model with time-varying parameters and use this model to extract global, region-specific, and

country-specific uncertainty. The time-varying factor loadings have been directly specified as random

walk processes in their model.

Now, we adopt our tests to investigate the proper specification of time-varying factor loadings for

this dataset constructed by global macroeconomic and financial variables. The dataset consists of

quarterly data, spanning the first quarter of 1960 to the fourth quarter of 2016 for 22 OECD countries.

For each of the 22 countries, the dataset contains 20 variables, ranging from real economic activity,

consumer prices, labor market variables, interest rates, credit market variables, money, international

trade variables, and exchange rates. For the details of the data description, please see Mumtaz and

Musso (2019).

Table 8 reports the values of test statistics and the corresponding P -values under different choices

of M when applying our tests to the global macroeconomic and financial dataset. Similar to the

results in Table 7, Table 8 shows that the specification under H1 is supported by both S
(1)
NT (ω) and

S
(2)
NT (ω). Hence, we suggest using deterministic functions of time when modeling the time-varying
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Table 8: Empirical results for the global macroeconomic and financial dataset
Testing H1 against H2 Testing H2 against H1

S
(1)
NT (ω) P -value S

(2)
NT (ω) P -value

a = 0.8 0.6579 0.4173 29.3947 0.0000
a = 1 1.0088 0.3152 108.5859 0.0000
a = 1.2 0.1446 0.7038 320.8957 0.0000
a = 1.5 2.0918 0.1481 1497.7760 0.0000

Note: See the notes in Table 7.

factor loadings in this application. Furthermore, we note that the conclusion is also robust to various

choices of M .

7 Conclusion

Time-varying factor models have attracted great attention in analyzing large-dimensional macroe-

conomic and financial datasets. Most existing literature on time-varying factor models specifies the

time-varying factor loadings as either deterministic functions of time or stochastic processes, mostly

stationary VAR processes and unit root processes. Different specifications of time-varying factor

loadings lead to distinct estimation procedures and economic implications. The existing literature

has paid considerable attention to testing for structural changes in a factor model. The related works,

such as Chen et al. (2014), Han and Inoue (2015), and Cheng et al. (2016), can distinguish the factor

model with stationary VAR factor loadings from the model with deterministic-varying or unit-root

type factor loadings. However, no formal tests exist to distinguish deterministic time-varying factor

loadings from unit-root type factor loadings.

This paper fills in the gap in the literature by proposing two tests that can test the null hypothesis

of either the deterministic time-varying factor loadings or unit-root type factor loadings against each

other. Both proposed tests are based on the randomization approach, which is especially suitable

for the current setting since consistent estimation for the unit-root type time-varying factor loadings

is infeasible. As a result, we do not need to consistently estimate the number of common factors

for the two non-nested models. Furthermore, the proposed test statistics are easy to compute and

asymptotically pivotal. Monte Carlo studies demonstrate that both proposed tests have reasonable

size and excellent power in distinguishing these two specifications of time-varying factor loadings.

Our empirical studies suggest that specifying the factor loadings as deterministic functions of time
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is appropriate for both the U.S. macroeconomic dataset and Mumtaz and Musso’s (2019) global

macroeconomic and financial dataset.

Mathematical Appendix

In this appendix we prove the main results of the paper. Let C0, C1 and C2 be generic constants

that may vary over places. Let
∑T

t,s=1 =
∑T

t=1

∑T
s=1 and

∑R
r,r1,l,l1=1 =

∑R
r=1

∑R
r1=1

∑R
l=1

∑R
l1=1 .

A Proof of Proposition 1

To prove Proposition 1, we need the following lemma.

Lemma 1. Consider a multi-index partial sum process US1,...,Sh
=
∑S1

i1=1 · · ·
∑Sh

ih=1 ξi1···ih . Assume
that E |US1,...,Sh

|p ≤ C0
∏h

j=1 S
dj
j where p ≥ 1 and dj ≥ 1 for all 1 ≤ j ≤ h. Then

lim sup
min(S1,...,Sh)→∞

US1,...,Sh∏h
j=1 S

dj/p
j (logSj)

1+ 1
p
+ϵ

= 0 a.s.

for all ϵ > 0.

For a proof of the above lemma, see Lemma A.1 in Massacci and Trapani (2021).

Given that ϕ̂jNT is the jth largest eigenvalue of the T × T matrix XX ′/(NT ),

D̂ ≡
T∑

j=1

ϕ̂jNT = tr
(
XX ′

NT

)
=

1

NT

N∑
i=1

T∑
t=1

X2
it =

1

NT

N∑
i=1

T∑
t=1

(F ′
tλit + εit)

2

=
1

NT

N∑
i=1

T∑
t=1

F ′
tλitλ

′
itFt +

1

NT

N∑
i=1

T∑
t=1

ε2it +
2

NT

N∑
i=1

T∑
t=1

F ′
tλitεit

≡ D̂1 + D̂2 + 2D̂3.

We first prove (i) by showing that under H1, we have: (i.a) D̂1
a.s.→tr[ΣΛΣF ], (i.b) D̂2

a.s.→ σ2
ε , and

(i.c) D̂3
a.s.→ 0. We first show (i.a). Recall that ΣΛt = N−1Λ′

tΛt. Let er denote the rth column of IR.

Then

D̂1 − E(D̂1) =
1

NT

T∑
t=1

N∑
i=1

λ′
it

(
FtF

′
t − ΣF

)
λit =

1

T

T∑
t=1

tr
[
ΣΛt

(
FtF

′
t − ΣF

)]
=

1

T

T∑
t=1

R∑
r=1

e′rΣΛt

(
FtF

′
t − ΣF

)
er =

1

T

T∑
t=1

ξ1t,
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where ξ1t ≡
∑R

r=1 e
′
rΣΛt (FtF

′
t − ΣF ) er. By the uniform boundedness of ΣΛt under Assumption

A.3(i), we can readily apply Assumption A.1(iii) and show that

E

∣∣∣∣∣
T∑
t=1

ξ1t

∣∣∣∣∣
2

=

T∑
t=1

T∑
s=1

E (ξ1tξ1s) ≤ C0

T∑
t,s=1

R∑
r,r1,l,l1=1

|E {frl,tfr1l1,s}| ≤ C1T,

where frl,t = FrtFlt − E (FrtFlt) . Then by Lemma 1,

1

T

T∑
t=1

ξ1t = oa.s.

(
T−1/2(log T )

3
2
+ϵ
)

for all ϵ > 0. In addition, E(D̂1) = 1
T

∑T
t=1tr[ΣΛtΣF ] →tr[ΣΛΣF ] ≥ 0 by Assumptions A.1(i) and

A.3(ii). It follows that D̂1 =tr[ΣΛΣF ] + oa.s. (1) . Next, we show (i.b). Note that

D̂2 − E(D̂2) =
1

NT

N∑
i=1

T∑
t=1

[
ε2it − E

(
ε2it
)]

=
1

NT

N∑
i=1

T∑
t=1

ξ2,it,

where ξ2,it = ε2it − E
(
ε2it
)
. Under Assumption A.2(iii), we have E

∣∣∣∑N
i=1

∑T
t=1 ξ2,it

∣∣∣2 ≤ CNT. Then

by Lemma 1,
1

NT

N∑
i=1

T∑
t=1

ξ2,it = oa.s.

(
(NT )−1/2(logN log T )

3
2
+ϵ
)

for all ϵ > 0. This, along with the fact that E(D̂2) = 1
NT

∑N
i=1

∑T
t=1E

(
ε2it
)
→ σ2

ε > 0 under

Assumption A.2(ii), implies that D̂2 = σ2
ε + oa.s. (1) . Similarly, noting that E

∥∥∥∑N
i=1

∑T
t=1 F

′
tλitεit

∥∥∥2
≤ CNT under Assumption A.3(iii), we can apply Lemma 1 to obtain

D̂3 = oa.s.

(
(NT )−1/2(logN log T )

3
2
+ϵ
)

for all ϵ > 0. Then (i.c) holds. In sum, we have

D̂1 = D1 + σ2
ε + oa.s. (1) .

Now, we show (ii) by showing that under H2, we have: (ii.a) T−1D̂1
a.s.→ 1

2tr(ΣΣF ), (ii.b) T−1D̂2
a.s.→

0, and (ii.c) T−1D̂3
a.s.→ 0. Noting that

λitλ
′
it =

[
λit − Σ

1/2
i Wi (t) + Σ

1/2
i Wi (t)

] [
λit − Σ

1/2
i Wi (t) + Σ

1/2
i Wi (t)

]′
= Σ

1/2
i Wi (t)Wi (t)

′Σ
1/2
i +Σ

1/2
i Wi (t)

[
λit − Σ

1/2
i Wi (t)

]′
+
[
λit − Σ

1/2
i Wi (t)

]
Wi (t)

′Σ
1/2
i +

[
λit − Σ

1/2
i Wi (t)

] [
λit − Σ

1/2
i Wi (t)

]′
≡ dit,1 + dit,2 + dit,3 + dit,4,
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we have

T−1D̂1 =
1

NT 2

N∑
t=1

T∑
t=1

F ′
tλitλ

′
itFt =

4∑
ℓ=1

1

NT 2

N∑
t=1

T∑
t=1

F ′
tdit,1ℓFt ≡

4∑
ℓ=1

D̂1,ℓ.

Let D1,1N (t) = 1
N

∑N
i=1Σ

1/2
i Wi (t)Wi (t)

′Σ
1/2
i . Then

D̂1,1 =
1

NT 2

N∑
i=1

T∑
t=1

tr
(
F ′
tΣ

1/2
i Wi (t)Wi (t)

′Σ
1/2
i Ft

)
=

1

T 2

T∑
t=1

tr
[
D1,1N (t)FtF

′
t

]
.

By the independence between {vis} and {Ft} under Assumption A.4(ii) and the fact that E
[
Wi (t)Wi (t)

′] =
tIR, we have

E(D̂1,1) =
1

NT 2

N∑
i=1

T∑
t=1

tr
(
Σ
1/2
i E

[
Wi (t)Wi (t)

′]Σ1/2
i ΣF

)
=

1

N

N∑
i=1

tr (ΣiΣF )
1

T 2

T∑
t=1

t → 1

2
tr (ΣΣF ) > 0.

In addition,

D̂1,1 − E(D̂1,1) =
1

T 2

T∑
t=1

tr
{
D1,1N (t)FtF

′
t − E

[
D1,1N (t)FtF

′
t

]}
=

1

T 2

T∑
t=1

tr
{
[D1,1N (t)− E (D1,1N (t))]

(
FtF

′
t − ΣF

)}
+

1

T 2

T∑
t=1

tr
{
E (D1,1N (t))

(
FtF

′
t − ΣF

)}
+

1

T 2

T∑
t=1

tr {[D1,1N (t)− E (D1,1N (t))] ΣF }

=
1

T 2

T∑
t=1

ξ3Nt +
1

T 2

T∑
t=1

ξ4Nt +
1

T 2

T∑
t=1

ξ5Nt,

where ξ3Nt =tr{[D1,1N (t)− E (D1,1N (t))] (FtF
′
t − ΣF )} , ξ4Nt =tr{E (D1,1N (t)) (FtF

′
t − ΣF )} , and

ξ5Nt =tr{[D1,1N (t)− E (D1,1N (t))] ΣF } . Note that

E

∣∣∣∣∣
T∑
t=1

ξ3Nt

∣∣∣∣∣
2

=
T∑

t,s=1

E (ξ3Ntξ3Ns)

=
T∑

t,s=1

R∑
r,l=1

E{e′r [D1,1N (t)− E (D1,1N (t))]
(
FtF

′
t − ΣF

)
ere

′
l

(
FsF

′
s − ΣF

)
× [D1,1N (s)− E (D1,1N (s))] el}
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=
T∑

t,s=1

R∑
r,l=1

tr{E
[(
FtF

′
t − ΣF

)
ere

′
l

(
FsF

′
s − ΣF

)]
×E

{
[D1,1N (s)− E (D1,1N (s))] ele

′
r [D1,1N (t)− E (D1,1N (t))]

}
}

≤ C1

T∑
t,s=1

R∑
r,l=1

s · t
∥∥E [(FtF

′
t − ΣF

)
ere

′
l

(
FsF

′
s − ΣF

)]∥∥
≤ C1

T∑
s=1

s2
R∑

r,l=1

T∑
t=1

∥∥E [(FtF
′
t − ΣF

)
ere

′
l

(
FsF

′
s − ΣF

)]∥∥
≤ C2T

3,

where the second inequality holds by the Cauchy-Schwarz inequality (viz., st ≤ (s2 + t2)/2) and the

last inequality holds by Assumption A.1(iii). In addition, the first inequality in the above derivation

holds because

∥∥E {[D1,1N (s)− E (D1,1N (s))] ele
′
r [D1,1N (t)− E (D1,1N (t))]

}∥∥2
≤ E

∥∥∥∥∥ 1

N

N∑
i=1

Σ
1/2
i

[
Wi (s)Wi (s)

′ − sIR
]
Σ
1/2
i el

∥∥∥∥∥
2

E

∥∥∥∥∥e′r 1

N

N∑
i=1

Σ
1/2
i

[
Wi (t)Wi (t)

′ − tIR
]
Σ
1/2
i

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

∥Σi∥2E
∥∥Wi (s)Wi (s)

′ − sIR
∥∥2 1

N

N∑
i=1

∥Σi∥2E
∥∥Wi (t)Wi (t)

′ − tIR
∥∥2

≤

{
1

N

N∑
i=1

∥Σi∥2
}2

max
i

E
∥∥Wi (s)Wi (s)

′ − sIR
∥∥2max

i
E
∥∥Wi (t)Wi (t)

′ − tIR
∥∥2

≤ C1s
2t2,

where we use the fact that E ∥Wi (s)∥4 = E
(
ΣR
r=1W

2
i,r (s)

)2
≤ RΣR

r=1E[W 4
i,r (s)] = 3R2s2 with

Wi,r (s) denoting the r-th element of Wi (s) . Note that we allow for full, strong, or weak dependence of

Wi (s) over i. Then by Lemma 1, 1
T 2

∑T
t=1 ξ3Nt = oa.s.

(
T−1/2 (log T )3/2+ϵ

)
for any ϵ > 0. Analogously,

we can show that 1
T 2

∑T
t=1 ξkNt = oa.s.(1) for k = 4, 5. It follows that D̂1,1 = 1

2tr(ΣΣF ) + oa.s. (1) .

Next,

D̂1,4 =
1

NT 2

N∑
i=1

T∑
t=1

F ′
t

[
λit − Σ

1/2
i Wi (t)

] [
λit − Σ

1/2
i Wi (t)

]′
Ft

≤ max
t

1

NT

N∑
i=1

∥∥∥λit − Σ
1/2
i Wi (t)

∥∥∥2 1

T

T∑
t=1

∥Ft∥2

= oa.s.
(
T−2ϵ0

)
Oa.s. (1) = oa.s. (1) ,

where we use Assumption A.4(iii) and the fact that 1
T

∑T
t=1 FtF

′
t = ΣF + oa.s. (1) under Assumption
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A.1 by a simple application of Lemma 1. Now, by the Cauchy-Schwarz inequality,∣∣∣D̂1,2

∣∣∣ = ∣∣∣D̂1,3

∣∣∣ ≤ D̂
1/2
1,1 D̂

1/2
1,4 = Oa.s. (1) oa.s. (1) = oa.s. (1) .

In sum, we have shown that T−1D̂1 =
1
2tr(ΣΣF ) + oa.s. (1) .

Next, by the result in (i.b), T−1D̂2 = Oa.s.

(
T−1

)
and thus (ii.b) follows. For (ii.c), we have by

the Cauchy-Schwarz inequality that

T−1
∣∣∣D̂3

∣∣∣ ≤ {T−1D̂1

}1/2 {
T−1D̂2

}1/2
= Oa.s. (1)Oa.s.

(
T−1/2

)
= oa.s. (1) .

In sum, we have T−1D̂ = 1
2tr(ΣΣF ) + oa.s. (1) under H2.

B Proof of Theorem 1

When testing H1 against H2, we define YNT = TD̂−1. Given Proposition 1, we have YNT = Ōa.s.(T )

under H1 and YNT = Ōa.s.(1) under H2, where Ōa.s. (·) denote the exact order. Without loss of

generality, we assume that {ξm}Mm=1 ∼ i.i.d.N(0, 1) with G(0) = 1/2.

(i) Note that conditioning on the sample ω associated with D̂ (ω) ,

Vm,NT (ω) ∼ N(0,Y2
NT (ω)),

for each m = 1, . . . ,M . Let Ω1 ≡ {ω : YNT (ω) → ∞}. With the almost sure convergence by

Proposition 1, we have P (Ω1) = 1 under Assumptions A.1–A.3. Fix some u > 0.

P ∗(Vm,NT (ω) ≤ u) = P ∗(Vm,NT (ω) ≤ 0) + P ∗(0 < Vm,NT (ω) ≤ u)

=
1

2
+

1√
2πYNT (ω)

∫ u

0
e
− x2

2Y2
NT

(ω)dx

=
1

2
+Oa.s.(T

−1).

Similar arguments apply to the case when u < 0, i.e.,

P ∗(Vm,NT (ω) ≤ u) = P ∗(Vm,NT (ω) ≤ 0)− P ∗(u < Vm,NT (ω) ≤ 0)

=
1

2
− 1√

2πYNT (ω)

∫ 0

u
e
− x2

2Y2
NT

(ω)dx

=
1

2
−Oa.s.(T

−1).

Conditioning on the sample, we have

E∗ [I(Vm,NT (ω) ≤ u)] = P ∗(Vm,NT (ω) ≤ u) =
1

2
+Oa.s.(T

−1).

35



We then decompose

ZNT (u, ω) = Z0
NT (u, ω) + 2

√
M

{
E∗ [I(Vm,NT (ω) ≤ u)]− 1

2

}
= Z0

NT (u, ω) +Oa.s(M
1/2T−1).

where Z0
NT (u, ω) =

2√
M

∑M
m=1 {I(Vm,NT (ω) ≤ u)− E∗ [I(Vm,NT (ω) ≤ u)]} . It follows that E∗[ZNT (u, ω)]

= oa.s.(1) since M1/2T−1 → 0 as (M,T ) → ∞. Notice that I(Vm,NT (ω) ≤ u) is a binary variable for

any u. We have

E∗ [I(Vm,NT (ω) ≤ u)]2 = E∗[I(Vm,NT (ω) ≤ u)] =
1

2
+Oa.s.(T

−1),

and

Var∗ [I(Vm,NT (ω) ≤ u)] = E∗[I(Vm,NT (ω) ≤ u)] {1− E∗[I(Vm,NT (ω) ≤ u)]}

=

[
1

2
+Oa.s.(T

−1)

] [
1

2
−Oa.s.(T

−1)

]
=

1

4
+Oa.s.(T

−1).

It follows that

Var∗
[

2√
M

M∑
m=1

[I(Vm,NT (ω) ≤ u)]

]
=

4

M

M∑
m=1

Var∗ [I(Vm,NT (ω) ≤ u)]

= 4

[
1

4
+Oa.s.(T

−1)

]
= 1 +Oa.s.(T

−1).

Given that I(Vm,NT (ω) ≤ u), m = 1, . . . ,M , is an independent and identically distributed (i.i.d.)

triangular array, using the CLT for i.i.d. triangular array, we have

ZNT (u, ω)
d∗→ N(0, 1),

as M → ∞ for each fixed u.

Now, we show the convergence holds uniformly in U. Consider u1 ∈ U and u2 ∈ U with u1 < u2.

Then

E∗
(∣∣Z0

NT (u2, ω)− Z0
NT (u1, ω)

∣∣2) = Var∗
(
Z0
NT (u2, ω)− Z0

NT (u1, ω)
)

= Var∗
(∣∣∣∣∣ 2√

M

M∑
m=1

I(u1 < Vm,NT (ω) ≤ u2)

∣∣∣∣∣
)

=
4

M

M∑
m=1

Var∗ [I(u1 < Vm,NT (ω) ≤ u2)]
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≤ 4E∗ [I(u1 < Vm,NT (ω) ≤ u2)]

= 4 [P ∗(Vm,NT (ω) ≤ u2)− P ∗(Vm,NT (ω) ≤ u1)]

= Oa.s.(T
−1).

Similarly, we can show that

E∗ [Z0
NT (u1, ω)Z

0
NT (u2, ω)

]
=

4

M

M∑
m=1

Cov∗ [I(Vm,NT (ω) ≤ u1), I(Vm,NT (ω) ≤ u2)]

= 4{E∗ [I(Vm,NT (ω) ≤ u1)I(Vm,NT (ω) ≤ u2)]

−E∗ [I(Vm,NT (ω) ≤ u1)]E
∗ [I(Vm,NT (ω) ≤ u2)]}

≤ 4

{[
1

2
+Oa.s.(T

−1)

]
−
[
1

2
+Oa.s.(T

−1)

] [
1

2
+Oa.s.(T

−1)

]}
= 1 +Oa.s.(T

−1).

Then by the continuous mapping theorem, we have

SNT (ω) =

∫
U

∣∣Z0
NT (u, ω)

∣∣2 dΦ(u) + oa.s.(1)
d∗→ χ2

1,

conditional on the sample path ω ∈ Ω1.

(ii) Under H2, Proposition 1(ii) implies that YNT = TD̂−1 a.s.→ D−1
2 . Then P (Ω2) = 1, where

Ω2 ≡ {ω : YNT (ω) → D−1
2 }. Conditioning on the sample path ω,

Vm,NT (ω)
d∗→ N(0, D−2

2 )

as (N,T ) → ∞ for each m. Let F (u) be the CDF of a N(0, D−2
2 ) random variable and FNT (u, ω) ≡

P ∗(Vm,NT (ω) ≤ u) be the CDF of Vm,NT (ω) conditional on the sample path ω. Then

ZNT (u, ω) =
2√
M

M∑
m=1

[I(Vm,NT (ω) ≤ u)− FNT (u, ω)] + 2
√
M [FNT (u, ω)− F (u)]

+2
√
M

[
F (u)− 1

2

]
≡ A1(u, ω) +A2(u, ω) +A3(u, ω), say.

Conditioning on the sample path ω, for each u, it is straightforward to show that E∗[A1(u, ω)] = 0

given that E∗ [I(Vm,NT (ω) ≤ u)] = FNT (u, ω), and

E∗ [A2
1(u, ω)

]
=

4

M

M∑
m=1

Var∗ [I(Vm,NT (ω) ≤ u)] = 4FNT (u, ω)[1− FNT (u, ω)].
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Using similar arguments, we can show that A1(u, ω) is asymptotically tight on U. Thus, supu∈U |A1(u, ω)| =

Op∗(1) for each ω ∈ Ω2. Next, consider A2(u, ω). Under Proposition 1(ii), T−1D̂−D2 = oa.s.(1). By

the Berry-Esséen Theorem (see, e.g., Theorem 25.7 in Davidson (1994)),

sup
u∈U

|FNT (u, ω)− F (u)| = O(M−1/2) a.s.-ω.

Thus, supu∈U |A2(u, ω)| = Oa.s(1). Furthermore, since F (0) = 1/2, A3(u, ω) ̸= 0 for u ̸= 0. Then,

it follows that ZNT (u, ω) diverges to infinity at the rate
√
M for all ω ∈ Ω2 with P (Ω2) = 1. Then

P ∗
[
S
(1)
NT (ω) > cM

]
→ 1 a.s.-ω ∈ Ω2 as T → ∞ or (N,T ) → ∞ for any cM = o (M) .

C Proof of Theorem 2

When testing H2 against H1, we define YNT = D̂. Given Proposition 1, we have YNT = Ōa.s.(T )

under H2 and YNT = Ōa.s.(1) under H1. Without loss of generality, we still assume that {ξm}Mm=1 ∼

i.i.d.N(0, 1). Note that we have the similar orders of magnitude of YNT under the null and alternative

hypotheses as in Theorem 1. Hence, following analogous arguments as used in the proof of Theorem

1, we can establish the desired results.
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